TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning
نویسندگان
چکیده
As data science becomes more mainstream, there will be an ever-growing demand for data science tools that are more accessible, flexible, and scalable. In response to this demand, automated machine learning (AutoML) researchers have begun building systems that automate the process of designing and optimizing machine learning pipelines. In this paper we present TPOT v0.3, an open source genetic programming-based AutoML system that optimizes a series of feature preprocessors and machine learning models with the goal of maximizing classification accuracy on a supervised classification task. We benchmark TPOT on a series of 150 supervised classification tasks and find that it significantly outperforms a basic machine learning analysis in 21 of them, while experiencing minimal degradation in accuracy on 4 of the benchmarks—all without any domain knowledge nor human input. As such, GP-based AutoML systems show considerable promise in the AutoML domain.
منابع مشابه
Automating Biomedical Data Science Through Tree-Based Pipeline Optimization
Over the past decade, data science and machine learning has grown from a mysterious art form to a staple tool across a variety of fields in academia, business, and government. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning—pipeline design. We implement a Tree-based Pipeline Optimization Tool (TPOT) and...
متن کاملLayered TPOT: Speeding up Tree-based Pipeline Optimization
With the demand for machine learning increasing, so does the demand for tools which make it easier to use. Automated machine learning (AutoML) tools have been developed to address this need, such as the Tree-Based Pipeline Optimization Tool (TPOT) which uses genetic programming to build optimal pipelines. We introduce Layered TPOT, a modification to TPOT which aims to create pipelines equally g...
متن کاملIdentifying and Harnessing the Building Blocks of Machine Learning Pipelines for Sensible Initialization of a Data Science Automation Tool
As data science continues to grow in popularity, there will be an increasing need to make data science tools more scalable, flexible, and accessible. In particular, automated machine learning (AutoML) systems seek to automate the process of designing and optimizing machine learning pipelines. In this chapter, we present a genetic programming-based AutoML system called TPOT that optimizes a seri...
متن کاملTowards a more efficient representation of imputation operators in TPOT
Automated Machine Learning encompasses a set of meta-algorithms intended to design and apply machine learning techniques (e.g., model selection, hyperparameter tuning, model assessment, etc.). TPOT, a software for optimizing machine learning pipelines based on genetic programming (GP), is a novel example of this kind of applications. Recently we have proposed a way to introduce imputation metho...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کامل